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Carbon and Nitrogen Abundances in Stars.

The aim of the proposal was to determine the nitrogen to carbon abundance
ratios from transition layer lines in stars with different TQFFand
luminosities.

The surface emission line fluxes F are given by
F =J2 (T,line) - Em(T) Ab(element)

where 1 gives the collisional excitation rate for the line under
investigation for the temperature at which the line is predominantly formed.
Ab (element) 'f the abundance of the element under investigation and

2 2

Em(T) =‘& n; dh is the emission measure, with Ny = the electron density

i
and the heights h, and h, bracket the height range at which the line is
predominantly formed. When F is measured and JZ(T,line) is known from theory
or experiment the product Em(T)- Ab(element) can be determined. For stars with
known element abundances the Em(T) can be determined for different
temperatures from lines formed at different temperatures. For main sequence
and luminosity class IV stars with supposedly solar element abundances it was
found that the dependence of the emission measures on temperature follows a
power law for the temperature range 30,000K < T < 150,000K. We determine the
exponent of the power law for each star from the ratio of the CII to CIV
emission measures which is independent of the element abundance. These lines
originate at very different temperatures (30,000K and 100,000K). With the
known exponent in the power law we can extrapelate the emission measures to
T=150, 000K, the temperature at which the NV lines are formed. For stars for
which we do not know the abundance of carbon the carbon lines only give us the
product of Em(T)-Ab(carbon) which we extrapolate to 150, 000K.

The mwasured ratio of the NV to CIV emission line fluxes is given by

F(NV) __  (NV) Em(NV) AB(N)
F(CIV) (CIV) Em(CIV) Ab(C)

from which the abundance ratio N/C can be determined. (The unknown factor of
the carbon abundance is attached to both the Em(CIV) and the extrapolated
Em(NV) and therefore cancels.) We previously reported our results for giants.

Some colleagues have expressed concerns whether the power law extrapolation
of the emission measures to T=150,000K is justified for the giants studied by
us. We have checked this again for several FV and FIV stars with solar
abundances and the fit is quite good. As a further check we have compared our
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abundance results with those of photospheric abundance studies for stars in
common with the photospheric investigations. The results are shown in Figure
1, which, I think shows that our analyses are at least as accurate as the
photospheric determinations. Our studies can be extended to F and early G
stars for which photospheric abundance determinations for giants are hard to
do because molecular bands become too weak. We estimate the upper limit for
our errors to be 0.27 dex, which could occur only if all the errors conspire
to work in the same direction which is rather unlikely. We have submitted the
abundance results for publication in the Ap.J. I enclose a copy of the
manuscript.

We have then looked at the abundance determination in the context of
stellar evolution. As already shown in the last report the N/C abundance ratio
increases steeply at the point of evolution for which the convection zone
reachest deepest. Looking at the evolution of the rotation velocities v sin i
we also find a steep decrease in v sin i at this point, which makes it rather
likely that the decrease in v sin i is related to the increasing depth of
the convection zone.

The evolutionary timescales for the giants are rather short. Rutten and
Pylyser (1988) estimate by comparison with main sequence stars that these
timescales are too short for magnetic braking due to stellar winds to cause the
decrease in v sin i during such a small interval of Tegp - This leaves two
possibilities: Either the deep convection zone leads to much larger magnetic
activity than for main sequence stars thereby leading to enhanced fast braking
or the surface angular momentum is reduced due to rearrangement of angular
momentum within the star caused by the deep convection. If the star started
out rotating nearly as a rigid body and convection brings deep material to the
surface as indicated by the increased N/C abundance ratio, it brings at the
same time lower angular momentum material to the surface. The surface v sin i
is then expected to decrease as already pointed out by Endal and Sofia. For
rotation with nearly depth independent angular momentum in the deep convection
zone Endal and Gray (1982) calculate a surface v sin i as indicated by the
squares shown in Figure 2 ,assuming an original v sin i = 140 km/sec. as
observed in the average for the main sequence progenitors. This point fits the
observations rather well.

On the other hand if increased magnetic activity due to deep convection is
responsible for the fast braking we may expect to see increased transition
layer activity and increased coronal temperatures leading to stronger stellar
winds. We have checked this. No increased transition layer emission is seen at
the point where v sin i decreases and no increased X-ray emission is seen
either. We conclude that the decrease in v sin i for Tefs< 5800 K is most
probably due to the rearrangement of angular momentum in the stars due to deep
convective mixing. It appears that the convection zone is rotating with nearly
depth independent angular momentum.

If the angular momentum of the star does not change at this point, yet a
Steep decrease in magnetic activity is seen as observed in the CIV lines, then
this shows that the dynamo responsible for the transition layer activity is
seated mainly in the surface layers of the star which has the low v sin i. The
high v sin i value in the deeper layers has apparently no influence. The same
holds for the magnetic field responsible for the coronal X-ray emission.

We have written up these discussions in a paper submitted to the A.J. for
publication. A copy is enclosed.

We have now extended the abundance studies to luminosity class IV stars.
For these stars the transition layer emission is generally weaker. The
measuring uncertainties therefore become larger. The general trend for the N/C
abundance ratios still agrees with expectations from stellar evolution theory.
We find an average increase in the N/C abundance ratio at the point of deepest
convection. Since these stars are generally older than the giants they have
lost already some angular momentum while on the main sequence. The decrease in
v sin i at the evolutionary state with rapidly deepening convection still
Seems to be there but is less well pronounced. Evolutionary timescales along



the subgiant branch are somewhat longer thereby permitting the magnetic
braking to be more effective. On the other hand the activity for these stars
is generally lower than for the giants. Rutten and Pylyser argue that because
of this the magnetic braking also does not explain the decrease in v sin i for
the subgiants. For the subgiants we are still in the process of analysing the
relation between the different observational data and the interpretation in
terms of stellar evolution.

We are also in the process of determining the N/C abundance ratios for
main sequence stars for which the emission line fluxes are still smaller and
very few well exposed spectra are available. The NV lines are very difficult
to measure. For some FIV and FV stars very broad and complex features are seen
in the 1240 A spectral region, which we have not yet been able to interprete.
The N/C abundance ratios found for the cooler main sequence stars show a large
scatter due to the measuring uncertainty. For the best spectra the average
values seem to be the same for all spectral types as is to be expected, though
the average N/C ratio appears to be higher by 0.1 dex than for the giants.
This effect is more pronounced for the poorer spectra with hard to measure NV
lines. We therefore suspect that for weak lines we tend to measure
systematically somewhat too large emission line fluxes possibly interpreting a
noise peak as a line. We are still in the process of studying this problem.
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Figure /. The photospheric excess abundance ratios, as compared to solar abundance
ratios of nitrogen to carbon, obtained by other authors, are compared with the ones found
here from the transition layer lines. The limits of error for both our study and the
traditional approach of the other studies are shown in the lower right comer. The diagonal
solid line would be obtained for perfect agreement. All stars are giants except the open
circles which are supergiants from the Luck and Lambert (1985) paper.
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Figure Caption

Figure 2a. The dependence of the CIV (1550 A) emission line surface fluxes on the effective
temperature is shown for giants. Dots indicate known spectroscopic binaries, v indicate
variable radial velocities and question marks possible variable radial velocities for the
stars. RS indicates RS CVn stars, p stars with peculiar CN and/or CH molecular band
strengths. Brackets signal uncertain measurements, and arrows show that the values

given are upper limits.

Figure 2b. The measured rotational velocities v sin i are shown as a function of Teg or B-V.
Tef scale is the same as in Figures la and lc. Notation as in IYigure la. Notice that
the peculiar CN and CIl molecular band strength are observed only after the stars have

decreased their v sin i.

The dashed line indicates the expected decrease in v sin i due to expansion if each mass

clement were to conserve its angular momentum (see text).

The values calculated by Gray and Endal (1982) for vq sin i = 140 kms~! and for depth
independent specific angular momentum in the convection zones are given as squares.

Figure 2c. The logarithm of the CIV to CII line flux ratio Roiv = log EF((%%) is shown

as a function of log T.¢. Notation is the same as in Figure la. The ratio decreases for
slowly rotating stars, probably showing a smaller contribution of MHD wave heating. ~

Tau was omitted from the plot because of the large variations in Rcyy.
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Abstract

We explore the possibility to determine relative carbon, nitrogen and silicon abundances
from the emission line fluxes in the lower transition layers (3 - 10K < T < 1.5-10°K)
between stellar chromospheres and coronae. The surface fluxes of the transition layer
emission lines are proportional to the emission measures Em and the element abundances

A(el). Observations for main sequence and luminosity class IV stars with presumably solar

clement abundances show that for the lower transition layers t.e., for T & 1.5 10°K,
En, = BT~7. This is also expected from theoretical considerations. We assume that this
relation also holds for s stars with nonsolar element abundance ratios. For a given carbon
abundance the constants v and B in this relation can then be determined from the CII
and CIV emission line fluxes. The emission measures are thus known for all temperatures
between 3 - 10% and 1.5 - 103K. From the NV and SilV lines we can thereby determine the

abundances of these elements relative to carbon from their surface emission line fluxes.

Ratios of N/C abundances determined in this way for some giants and supergiants agree
within the limits of errors with those determined by Luck, Luck and Lambert, and Lambert
and Ries from molecular bands. For giants we find an increase in the ratio of N/C at B-V
~ 0.8 as expected theoretically. We also find some apparent changes in the silicon to carbon

abundance ratios.

Subject headings: stars: abundances - stars: emission-line — stars: late-type.
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I. Introduction and Background

In 1978, 1981, and 1985, Luck and Luck and Lambert found in the atmospheres
of supergiants and of Cepheids large N/C ratios coupled with increased C'3/C!? ratios

indicative of CNO cycle processed material being mixed up to the surface of these stars.

These peculiar C and N abundances drew the attention of Becker and Cox in 1982. They
studied whether such an enrichment in the nitrogen abundances in supergiants would be
expected in the course of standard stellar evolution theory. They found that while mixing due
to deep surface convection during the red giant phase dredges up some CNO cycle products
the expected increase in the N/C ratio is smaller than the observed one. They found that the
observed large increase in the N abundance could only be obtained theoretically if additional
mixing above the boundaries of the convective core would occur in the progenitors of the
supergiants and Cepheids during their main sequence phases. The material being mixed out
from the core can then later be dredged up by deep surface convection during the red giant

phase.

In 1981 Lambert and Ries also found larger than solar N/C ratios in giants. These
findings were confirmed by Brown (1987). See also Luck (1991). These authors found an
increase in N/C for B — V > 0.65. While the convection zone extends smoothly into deeper
and deeper layers noticeable amounts of CNO cycle processed material can be dredged up

only from very deep layers, close to the hydrogen burning shell source, which are reached by
the convection only for Teg < 5500 K. Lambert and Ries, Brown and Luck also find larger
increases in the N/C abundance ratios than would be expected theoretically.

Sneden, Pilachowski and VandenBerg (1986) studied the !2C/'3C ratio and find
indication for additional mixing during the main sequence phase also for population II giants,
which means for stellar masses ~ 1 Mg.

If additional mixing during the main sequence stage of massive stars actually takes place,

it has very important consequences for stellar evolution theory. As was first pointed out by
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Becker and Cox in 1982, and later also calculated by Bertelli, Bressan, Chiosi and Angerer
(1986) such mixing leads to a widening of the upper main sequence as compared to standard
evolution theory. It also leads to an increase of the main sequence lifetimes as compared
to standard evolution theory. In addition it leads to an increase in luminosity for the giant
phase for a star of a given mass and it especially leads to an increase of the luminosities of
the Cepheids of a given mass. The evolutionary masses of Cepheids are thereby decreased
and could then be in good agreement with the pulsational masses obtained for the distance

scale determined by Schmidt (1984).

Luck and Lambert and Sneden et al. determined the C and N abundances from
photospheric spectral analysis especially of molecular bands, which requires spectrum
synthesis. An accurate knowledge of the temperature stratification is required as well as
the knowledge of the oxygen abundance which is difficult to determine. LTE is always
assumed. On the other hand, Lambert and Ries think that they see indications for NLTE

effects in the strengths of the Fe lines in red giant atmospheres.

For supergiants Luck and Lambert used high excitation C and N lines to determine the
abundances. These lines might also be vulnerable to NLTE effects. We might then perhaps

wonder whether the abundance determinations can be trusted for giants and supergiants.

Since early interior mixing in stars appears to be very important for the whole
evolutionary track and especially for the mass luminosity relation for later stages of stellar
evolution, it seems to be very valuable to confirm it in another, independent way and also
study for which stars it does occur and whether the degree of main sequence interior mixing

depends on stellar masses or on rotation or perhaps the binary nature of stars.

Such a possibility is offered by the CI1, CIV, SilV and NV emnission line fluxes originating
in the transition regions between stellar chromospheres and coronae of cool stars. These lines
permit abundance determinations also for F and early G stars which are too hot for the CN

molecular bands to be studied.
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The possibility to determine relative abundances from transition layer emission lines was
first pointed out by Pottasch (1963), who found that for the sun the high ionization Fe lines
were too strong in comparison with other lines if Fe abundances were used as accepted at
the time for the solar photosphere. Higher abundances were required. It is well known that
this discovery lead to the large revision of the Fe oscillator strengths and photospheric Fe

abundances.

In their study of the emission measures for transition layer emission lines of bright giants
and supergiants, Hartmann, Jordan, Brown and Dupree (1985) find that for solar abundances
the Si III/CI1I] emission line ratios lead to densities which are inconsistent with those derived
from the CII doublet lines at 2326 A. They found that this discrepancy can be removed by
using so-called “evolved” abundances as determined by Luck and Lambert and collaborators

with Alog (N/C) = 0.67 as compared to the solar value.

II. Observational Data

In this study we concentrate on transition layer emission lines in giants. For population
[ giants we expect similar abundances for the main sequence predecessors. According to
theory we expect changes in the nitrogen to carbon abundance ratios for evolved stars. The
study of giants also offers the possibility to compare our results with those of Luck, Lambert
and collaborators. Data for the CII (1335 A), CIV (1550 A), SiIV (1394 A), NV (1240
A) emission lines were collected from the literature. We mainly used data from Ayres et
al. (1981), from Oranje ( 1986) from Rutten (1987) and from Simon and Drake (1989).
We added our own measurements from newer IUE spectra and remeasured older spectra to
compare our measurements with those of other authors. In Table 1 we collect the basic data
for the stars for which we measured or remeasured the fluxes of the emission lines. In Table
2 we give the angular radii and the surface fluxes as determined by us. In Table 3 we give
the surface fluxes for giants as determined by other authors. We only list values for spectra

for which we estimate the measuring errors in the line flux ratio Ry = f(1)/fL(2) to be less



than about 30% (Alog Ry, < 0.15).

In Figure 1 we compare the different measurements. Generally good agreement is found.
In a few cases deviations of up to +£0.2 dex are found which can be traced back to better,
well exposed spectra being available now. Some stars appear to have time variable fluxes.
We want to point out that we compare surface fluxes. Differences in the determination
of angular radii also appear in this comparison while they cancel out when we determine
element abundance ratios. \We generally used the Barnes-Evans (1976) method to determine

angular radii and surface fluxes.

II1. Method of Abundance Determinations from Observed

Emission Line Surface Fluxes

Element abundances can generally be expected to correlate with emission line fluxes,
which can therefore be used to determine element abundances provided that the excitation

processes are understood.

In the transition layers we find for optically thin lines and for collisional excitation and

radiative deexcitation that the surface emission line flux Fy is given by
Fp = Ex(T) Em(T) Nel/NH (l)

Here E,(T) is the emission measure, defined as

e ]

Em(t) = /Ah n?dh = -/AlnT n?(dh/dInT)dInT, (2)

where the integral has to be extended over the line forming layer, which usually corresponds
to a layer over which the temperature changes by about a factor of 2 or AlnT = 0.7. (See for
instance Pottasch 1963). The Ex(T) in equation (1) describe the collisional excitation rates
and depend on the collisional cross sections which are different for different lines. The factor

Nel/Np in equation (1) describes the element abundance for the line under investigation. For
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a measured surface flux F1, we can thus determine the product of Emn(T) and the element
abundance if the collisional cross sections are known. Since for different lines originating in
the same temperature range the emission measures have to be the same, we can determine
the relative abundances of these different chemical elements. If the different lines studied do
not originate at the same temperature but at different temperatures, we must still require
that the derived emission measures are a smooth function of the temperature. We can thus

interpolate between the known emission measures.

For the SiIV lines at 1400 A the commonly used Ex(T) (Brown and Jordan 1981) were
corrected by a factor of 3.16 because otherwise the SiIV emission measures always come
out too high, which would indicate a higher Si abundance. On the other hand the emission
measures derived for Silll often come out too low requiring a lower Si abundance. The
conclusion is (see Hartmann et al. 1985) that something is wrong with the E,(T) for the
SilV lines. We have determined an empirical correction using the SiIV emission lines of
main sequence stars for which the abundances are supposedly solar. This yielded a correction
factor Alog En(SiIV) = —0.5. This correction has no influence on the N/C abundance
ratios determined here. It also has no influence on the discussion of silicon abundance changes

because we always compare with main sequence abundances.

In Figures 2a and 2b we have plotted the emission measures as a function of temperature
T for the line forming region for several main sequence stars studied by Ayres et al. (1981)
and for some luminosity class IV stars using solar abundances.* For all these stars the
temperature dependence of the emission measures can be well represented by the relation
Fm o T7!'2 with the deviations usually being Alog Em < 0.1. Some deviations are most
likely due to measuring uncertainties for the emission line fluxes which are estimated to be

of the order of 15 to 25% (i.e., 0.06 to 0.1 dex) and may occasionally be larger for faint lines.

* We used: log N/Co = 0.5 and log % = 0.85 in close agreement with abundances

determined by Anders and Grevesse (1989).
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A theoretical interpretation for the simple relation Fy o« T~ was given by us (Bohm-
Vitense 1987). The exponent v can be determined from the ratio of the CII to CIV line
emission measures. If, assuming solar abundance, the emission measure for the SilV or
NV lines appear too large to be consistent with this relation, the increased line strength
can be attributed to an increased abundance of these elements. If the line is too weak, the

abundance must be lower than solar.

In Figures 3a and b we have plotted the emission measures obtained for some giants and
supergiants assuming the same solar abundances as used in Figure 2, namely log C = 8.5
and log N = 8.0 as well as log Si = 7.65 on the scale of log H = 12. In Figure 3a we see
that for these giants the ratio of the CII to CIV line fluxes could also be represented by the
relation E, o« T~!2, though a somewhat smaller exponent fits better for the supergiants.
In any case it is quite obvious that the points for the NV emission measures are too high
for all these giants and supergiants. The NV line flux is too large in comparison with the
C lines. This indicates a larger nitrogen abundance. The apparent increase in log Eq for
the NV lines as compared to those for the C lines immediately tells us the actual increase
in log (N/C). It can be read off directly from the plots (see Figure 3) and comes out to be
Alog(N/C) = 0.6 and 0.5 for @ Aqr and 3 Aqr respectively, as shown by the length of the
arrows in Figure 3b. For 3 Cet and 3 Dra we find A log N/C = 1.10 and 0.24 respectively.
For € Vir a value of 0.6 is found for A log N/C. Considering the uncertainty in the emission
line flux measurements and in d log E,/d log T we estimate the uncertainty of the A log

N/C to be generally < 0.27 dex (see Chapter IV).

In Figures 3 we zlso see an apparent enhancement of the SiIV emission measures as
compared to the C emission measures, indicating an apparent increase in the Si/C abundance
ratio. From nuclear reactions we do not expect an increase in the Si abundances due to the

CNO cycle but we do expect a decrease in the C abundance due to the conversion of 12C to
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N, In this process we expect N +12 C to remain constant. This leads to the relation
NIC = &= — e (3)

where AC = —AN and where N, C, AC and AN stand for the number of particles per unit
volume. AC stands for the number of carbon nuclei which were converted into nitrogen.
Equation (3) is an equation to calculate AC/Cg and thereby AC. For the solar abundances
given above and for N/C = 4 Ny /Cp as determined above for o Aqr we find A log C =
—0.27 = A log (Si/C) for a Agr in very good agreement with the apparent enhancement of
the emission measures for Si relative to carbon as seen in Figure 3. It is the apparent increase
in the SiIV emission measures also seen for the other stars in Figures 3 which confirms that

N/C is enhanced for these stars by a factor of about 3.

For v Tau the ratio of the CIV to CII emission line fluxes appears to be variable,
it is always rather large (see Figure 4). This may possibly be related to the presence of a
companion or to large active regions on the stellar surface with large CIV/CII line flux ratios.
Flares may also be important. Reducing the CIV line flux to the usual C IV over C II line flux
ratio could increase the overabundance of N/C by about 0.2 dex, the estimated uncertainty
of our abundances determinations. This would bring the transition layer abundance ratio
into better agreement with the photospheric abundance determinations for this stars. A

similar though smaller effect is also seen for 8! Tau.

In Figure 5 we compare our results with photospheric abundance determinations by
other authors. The agreement is as good as may be expected given the uncertainties of
0.2 dex estimated by all authors. If photospheric abundances have been determined by
several authors the transition layer abundances correspond rather well to the averages of the

photospheric abundances.

From the very meager statistics there is a suggestion that for the supergiants the

transition layer abundance ratios may come out somewhat lower than the photospheric ones.
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The photospheric determinations are based on NLTE analysis of the N1 lines. Perhaps we
might also have to consider NLTE temperature stratification for these supergiants for an
even more accurate abundance determination. The transition layer value for o and 8 Aqr
correspond better to theoretical expectations. But this must not mean that they are more
correct. For 3 Aqr the CIV to CII line flux ratio is rather high, but not so for a Aqr. We
realize, however, that even for these two supergiants the agreement between the different
abundance determinations is still within less than 0.2 dex, the uncertainty estimate for
these kinds of analyses. For 3 Dra the discrepancy is especially large. This star is situated
right at the Linsky-Haisch boundary line. The NV line may possibly be weakened due to the
lack of high enough temperatures in its transition layer. In Table 4 we give the data used in
Figure 5.

From Figure 5 it appears that our method of N/C abundance determination from
transition layer lines is as accurate as photospheric abundance determinations. It is much
simpler and provides at the same time also the ratio of the carbon abundance relative to Si
though the excitation of the SiIV lines may not be very well understood. The transition layer
abundances are rather easy to study for a large number of stars and can also be obtained

for F and G stars.
[t can easily be shown that we do not even have to determine emission measures but can
directly use the measured fluxes, because only line flux ratios are used in the analysis.

Unfortunately we cannot extend our studies to stars cooler than the Linsky Haisch
boundary line for chromospheric emission, because no CIV and NV lines can be seen

anymore. The very cool and very luminous stars cannot be analyzed in this way.

IV. Error Estimate

For well exposed spectra and reasonably strong emission lines the uncertainty in the
flux measurements for each line are less or about 25% or roughly 0.1 dex as verified by the

comparison of measurements by different authors. For underexposed spectra or very weak
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emission lines the errors may be twice as large. In this study we generally did not use
underexposed spectra. \We therefore estimate that for the stars studied the uncertainty in
the line flux ratio of the CII and CIV line is 0.2 dex. For weak NV lines the uncertainty

may in some cases be larger.

In order to determine the emission measure expected for the temperature where the NV
lines are formed we have to extrapolate the emission measure line from log T = 5.00 to log
T = 5.176. In the worst case the flux measurement errors for the two lines could be in the
opposite sense. In this case the error in the gradient dlog Em/dlog T would be 0.382 and the
error in the extrapolated Em for log T= 5.176 would be % 0.07 dex in addition to the error
in the C IV line flux leading to an error of £ 0.17 dex in the expected emission measure for

the NV line and correspondingly in the nitrogen to carbon abundance ratio.

In the other extreme the measuring errors for both lines could be in the same sense.
The gradient would then be correct and the error in the extrapolated Em would be 0.1 dex

leading to an error in the N/C ratio of 0.1 dex.

In addition we now have to consider the error in the NV line flux. If this is also 25%
as for the carbon lines then the mazimum error in the N/C ratio could be 0.27 dez if all
crrors add up which in general they will not. The more likely error would be the square root
of the sum of the errors squared which is 0.22 dez. For most of the giants studied here this
error estimate should hold. The NV line is however frequently weaker than the carbon lines
especially in stars in which nitrogen is not overabundant. In special cases the measuring
error for the NV lines can be as high as 50% or 0.2 dex. For these exceptional stars with
very weak NV lines the error could in the worst case increase to 0.37 dex if all errors would
add up which of course in general they will not. For stars with very weak NV lines an error

of 0.37 dex would be an upper limit for the error in the N/C abundance ratios.

Stars with normal nitrogen abundances are found in the F and early G star region where

surface fluxes are generally large. For the cooler stars surface line fluxes are generally smaller
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but nitrogen is overabundant in the giants. For the giants we therefore find generally NV lines
which on well exposed spectra can be measured with an accuracy of 25%. We therefore think
that generally the upper limit for the errors discussed so far is about 0.27 dex. Exceptional

cases are mentioned in the text.

Are there other uncertainties to be considered? A. Brown kindly pointed out to us that
the CIIlines form at lower temperatures than considered here. It appears to us that this must
depend on the relation between electron density and temperature in those lower temperature
regions. It will only be the case if the lower temperature regions have much higher electron
densities or are much more extended. If the CII lines do indeed form at lower temperatures
than assumed here then the Em(CII) will be larger. This will increase the gradient dlog
Em/dlog T. This presumably would be nearly the same for all stars. The emission measures
for log T = 5.176, the temperature where the NV lines form, will then be higher for all stars
including the standard stars. Since we only determine excess abundance ratios as compared
to the standard main sequence stars this does not affect our abundance ratio determinations.
This would be of importance if we wanted to determine absolute abundances. In that case
errors in the collisional excitation rates would also enter. For the determination of excess
abundance ratios all these factors do not enter as long as all stars studied here are affected

in the same way.

If the formation temperature for the CIT lines should change along the giant sequence
then this could influence the abundance results. If for instance log T should change by
~0.1 the required Em would increase approximately by 0.5 dex. The Em(T) gradient would
become steeper than assumed and the N/C abundance would have to be higher by about
0.1 dex. We see however at present no reason for such a change of the CII line forming

temperature along the giant sequence.

The SilV lines are sometimes hard to measure. They form, however, at temperatures
intermediate between the C 11 and CIV lines. The excess abundance ratio of Si/C is therefore

essentially independent of the adopted emission measure gradient. The uncertainty in the
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line flux measurement enters full. For this abundance ratio we therefore estimate the upper
limit for the error to be generally 0.2 dex but for some stars might be as high as 0.3 dex.
Any changes in the excitation rates along the giant sequence in addition to the dependence

on the electron density could, however, introduce additional errors.

Figure 5 confirms our error estimates when considering that the photospheric abundance

determinations also have an uncertainty of 0.2 dex at least.

V. Carbon, Nitrogen and Silicon Abundances for Giants Observed with IUE
A. The Data

In Table 5 we have collected the abundance ratios for N, C and Si as determined here
for the giants. The abundance ratios log Si/Cps were corrected for the reduced carbon

abundances. They were determined from the measured values Alog Si/C according to
(4) A'log Si/Cps = Alog Si/C + AlogC

where Alog C < O and was calculated according to equation (3). The A log Si/Cms thus

measure the apparent increase in silicon abundance as compared to the main sequence value.
B. The Temperature Dependence of the N/C Abundance Ratio

In Figure 6a we have plotted the A log N/C for the giants as a function of effective
temperature, as determined from the B-V colors (BShm-Vitense 1981; Flower 1977)
(interstellar reddening does not seem to be important for these bright stars as we checked
from their two color plots). We see an increase in the average N/C ratio at B-V ~ 0.8 or
log Teg = 3.73 with a fairly large scatter. Some of the scatter is certainly observational.
The maximum N/C ratios found here confirm the unexpectedly large admixture of CNO
processed material for these stars. According to the calculations by Sweigart, Greggio and
Renzini (1989) an increase of A log % = 0.55 is expected for the cool giants, i.e., for log T

~ 3.72, depending somewhat on the mass of the stars.
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Surprisingly we also find some F giants with an enhanced nitrogen abundance. The
enhancement is up to twice the estimated error limit. No such large deviations to the
negative side are found except for 3 Cas which is a § Scuti star and the emission line fluxes

may perhaps be caused by the pulsation rather than by an equilibrium transition layer.

Further studies are necessary to clarify the problem of the apparent increases in the N/C

abundance ratios in the F giants.
C. Dependence of Deep Mixing on Rotational Velocities

In Figure 6b we have reproduced the data from Figure 6a for those stars for which
rotational periods are known. We have indicated different period length by different symbols.
Stars with large rotational velocities are generally found for B-V < 0.7. They have mostly
low N/C ratios, though there are some exceptions. No correlation of N/C with rotational

periods can be established for the stars with B-V < 0.7.

Large N/C ratios are found mainly for cooler stars with generally low v sin i. No

dependence on rotation can be established for the cool stars either.
D. Depcudence of Deep Mixing on Luminosity

In Table 6 we give the absolute magnitudes for the giants studied here, as determined

by various methods, as explained in the table.

In Figure 6c we have plotted the N/C abundance ratios again as a function of T.g
but indicated different magnitudes by different symbols. No dependence of abundances on
absolute magnitude is apparent for a given range of Teq, at least not for the limited range

in M, covered by our program stars.
E. The Strength of the SiIV Lines

In Figure 7 we have plotted the derived A log N/Si. A general increase is observed as is
to be expected for an increase in the nitrogen abundance. For some of the F giants we find,
however, negative values, which if real, would mean either a decrease in nitrogen abundance,

not verified by the N/C abundance ratio, or an increase in the silicon abundance which would
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be very surprising. Further studies are needed to clarify this problem. For several cool giants
the increase in N/Si is not as large as expected for the increase in nitrogen abundance. The
SiIV line strengths for these stars also appear to be enhanced. It remains to be studied
whether this increase in the SiIV line strength is in fact due to an increase in the silicon to
carbon abundance ratio, or whether it might be due to a blend with another line, perhaps
the OV forbidden line at 1401 A. The line profiles on low resolution spectra suggest at
most a small contribution from the O IV line. The available high resolution spectra for cool
giants are either underexposed or do not show an additional line around 1400 A, which could

contribute.

In Figure 8 we have plotted the A log Si/Cms abundance ratios as a function of T.q. We
again find apparently increased Si abundances by up to a factor of 2 for some F starls. They
are preferentially stars with low v sin i. We wonder whether these stars might be descendents
of Am or Ap stars as was suggested by T. Wheeler (1991), for these the surface abundances
of carbon are decreased or the surface abundances of silicon increased supposedly due to
diffusion. We also find apparently increased Si abundances for the cool giants with large
N/C ratios indicating deep mixing. For these stars any surface abundance changes due to
diffusion should be wiped out. Though the increases in SilV line strength are not very large
we do not think that all of them are just measuring uncertainties because we do not find a
comparable number of negative A log Si/Cms. We also find increased Si I (1808, 1816 A) line
strengths for many of the stars with increased SilV line strengths. Clearly further studies
are needed to clarify the excitation of the SiIV lines and also to determine photospheric

abundances.

Helfer and Wallerstein (1968) determined Si/Fe ratios for several giants. The only star
in common with our program stars is § Boo A for which they find [Si/Fe] = 0.09 and [Fe/H]
= —0.57, while we find here [Si/C] = 0.44. No C or N abundances could be determined by

Helfer and Wallerstein.
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Luck (1991) and McWilliams (1990) studied heavy element abundances in giants with

Tef ~ 5500 K. Luck finds generally a nitrogen to carbon abundance ratio in agreement
with our determinations within the limits of error. His determinations indicate, however, a
reduction in carbon abundance larger than expected from the increase in the N/C abundance
ratio by about 0.25 dex in the average. Luck finds an increase in the Si/Fe abundance ratio
by 0.23 dex in the average as compared to solar values. Comparing the silicon abundances
to solar silicon abundances an increase of 0.1 dex is found in spite of the average lower Fe

abundances as compared to the sun and in spite of the lower carbon abundances.

For the G and K giants (B-V > 0.7) we determine here an average increase in the silicon
to carbon abundance ratio by 0.15 dex as compared to the main sequence F stars, which

supposedly have solar abundances.

McWilliams does not give carbon or nitrogen abundances. From his data an average
increase of the silicon to iron abundance ratio of 0.15 dex is found for the stars studied by

us.
For the G and K giants the different studies thus seem to be in fair agreement.

It may nevertheless be interesting in this context to note that Feldman, Widing and Lund
(1990) find increased S11V, Silll and Sill transition layer line strengths in plage regions,

which they interpret as an increased silicon abundance in those regions.
To clarify the problem of the silicon abundances in the transition layers photospheric

silicon abundances need to be studied in F main sequence and giant stars studied here so we

can compare abundance changes seen in the photospheres and in the transition layers.
F. Relation Between Nitrogen Enrichment and Lithium Abundances

In Table 5 we have also listed the lithium abundances determined by Brown et al. (1989),
and Lambert, Dominy and Sivertsen (1980) and by Luck (1991). If the nitrogen enrichment
is due to deep mixing we must expect also a destruction of lithium. In Figure 9 we compare

the trends of the Li and N/C abundances. Comparing with the lithium abundance of
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log €(Li) ~ 3 (if log e(H) = 12) for the interstellar medium we find a reduction of ¢(Li)
by a factor of 4 for log Teg = 3.74 and by a factor of 100 for log Teg ~ 3.70, the temperature
for which the nitrogen abundance starts to be generally high. A reduction of this order is
according to Iben (1967) expected due to the mixing of the lithium rich surface layers with
the lithium poor convection zones of increasing depths. For log Teg = 3.7 when nitrogen rich
material has been mixed to the surface the convection zone reaches deep into the lithium
burning region and further reduction in lithium abundances must be expected and seems to
be indicated for log Teg < 3.7. It is still continuing with a timescale of about 10° years, a
surprisingly long time after the nitrogen enrichment, when we expect very short timescales
for the lithium burning at the bottom of the convection zones. It is not clear whether for
such low temperatures we may see lower mass stars on the red giant branch or whether we
are still dealing with the same mass range as for the higher temperature giants. If so then
the slow decrease in €¢(Li) must mean that the mixing of the surface material down to the
lithium destruction layers is a rather slow process for these cool giants.

VI. Summary

We have shown that the Carbon to Nitrogen abundance ratios can be determined from
the emission line fluxes of the CII, CIV and NV lines originating in the lower part of
the transition regions between stellar chromospheres and coronae. For stars in common
the abundances obtained in this way agree with those obtained from photospheric studies
by Luck, Luck and Lambert, and Lambert and Ries within the quoted error limits of
Alog N/C ~ +0.22.

The abundance analysis by means of transition layer lines permits us to determine
nitrogen and carbon abundances also for F and early G giants for which CN molecular
bands cannot be analyzed. We can thus follow the evolution of the N/C abundance ratio

along the giant branch. We find a general increase in the N/C ratio by roughly a factor of 3

to 6 for B-V R 0.8. A factor of about 4 is expected theoretically (see Sweigart, Greggio and
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Renzini 1989) for increasingly deeper mixing when the outer convection zone reaches deeper
into the region where CNO processing has taken place earlier. The high degree of nitrogen
enrichment in some stars is, however, surprising. Additional mixing appears to be required
at least for some stars.

The analysis also seems to indicate an increasing silicon enrichment for most cool giants.
It remains to be seen whether this is real. So far we have not found any reason to explain
the strengths of the SiIV lines other than by increased abundances. If so, the reason for this
remains obscure. The excitation of the SiIV lines may not yet be well understood.
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Table 3

1

Surface Fluxes given by other Authors
and Remeasured in this Paper

STAR FL(CID® F(CIV)r F (SilV)® Fu(N V)
5.30 5.01 .

o Gem 5.12

25 Mon 5.10
t Vir 4.51
31 Com 5.22
35 Cnc 5.08

y3 Psc 4.89
24 UMa 4.44
HR 9024 4.74

e Vir 3.08
B Her 3.18
8! Tau 3.66
y Tau 3.24
f Gem 2.49
e Tau 3.08
f Cet 3.42

5.30
4.68
5.52
5.45
5.36
4.42
5.14
3.20
3.30
3.76
3.52
2.67
2.89
3.42

5.05
4.49
5.14
5.11
...-b

4.51
__.-b
2.97
3.00
3.76
3.43
2.87
3.15
3.60

4.58
4.36
3.92
4.62
4.97
R

4.18

----b
2.82
2.88
3.42
3.14
2.40
3.20
3.70

a Jog of surface fluxes are in unit of erg c2 s°1.
b the line is measureable but was not given in this study.

¢ Simon and Drake 1989
d Oranje 1986

Reference

cLococcoaaoocooacoacno
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Table 5
Excess Abundance Ratios as Compared to Solar Abundances
Determinations from our flux measurements

Star B-V Alog N/C Alog N/Si Alog Si/Cps*  log e(Li)!
o Gem 0.40 0.01 0.05 -0.06 “---
25 Mon 0.44 -0.03 -0.31 0.29 ===

L Vir 0.52 0.02 0.01 0.01
31 Com 0.67 -0.06 -0.20 0.15 ===
35Cnc 0.68 0.30 0.35 -0.14 —---
y3 Psc 0.69 -0.06 -0.13 0.08 ----
24 UMa 0.77 0.59 0.15 0.21 ----
HR 9024  0.79 0.66 0.46 -0.07 -

5 CrB 0.80 0.17 0.20 -0.08 1.2d

¢ UMi 0.89 0.50 0.12 0.20 ----

y Hya 0.92 0.66 0.55 -0.16 1.3d

e Vir 0.94 0.62 0.16 0.21 0.09¢

B Her 0.94 0.26 0.05 0.13 T

6! Tau 0.95 0.68 0.23 0.17 0.86¢

8 Boo 0.95 0.37 -0.19 0.44 0.84,0.9¢,0.85f
vy Tau 0.99 0.42 -0.03 0.31 0.74,1.11¢
g Gem 1.00 0.49 0.06 0.25 0.64,0.44¢
€ Tau 1.01 0.87 0.15 0.31 1.24,0.9¢

B Cet 1.02 1.10 0.44 0.08 <0.24,<0.3¢

Determinations from flux measurements of other Authors

20Peg® 034 035 -0.22 0.46
B Casc 034  -0.37 -0.33 0.02
HR 1889  0.43 0.33 0.00 0.22
45 Aurd  0.43 0.49 0.06 0.25
18 Com® 0.43  -0.04 -0.13 0.10
HR 8191>  0.47 0.28 0.15 0.04
aAur Abe 0.60  -0.08 -0.20 0.14 2.4h

v Pege 061  -0.19 -0.17 0.02
FK Com¢ 0.84  0.29 0.02 0.18

p Cyge 0.89 0.91 0.43 0.05 0.94,0.97f
aAurAag 090  0.17 -0.22 0.34 1.2h
I0LMic 092  0.55 0.11 0.23

n Here 092  0.65 0.23 0.16 0.94,0.93f
¢ Here 094  0.66 0.30 0.09 1.34

6 Cen¢ 1.01 0.82 0.23 0.22 -0.39¢

A Ande 1.01  -0.08 -0.05 -0.01
12Came  1.12 0.76 0.32 0.11
oGeme  1.12 0.72 0.45 -0.04 <0.34
DKDra® 114  0.46 0.23 0.07

o Aric 1.15 0.54 -0.17 0.51 <0.04,<0.3¢

® the carbon abundance has been adjusted to main sequence value.

b Simon and Drake 1989

¢ Oranje 1986

d Brown et al. 1989.

¢ Lambert et al. 1980.

f Luck 1991

8 Ayres 1988

h Boesgaard 1971

i Only the first values are plotted in Figure 9. Other values are presented to show the range
for the Lithium abundance determinations.
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Captions

Figure 1. We compare our measurements of surface line fluxes with those of Oranje
(1986) and Simon and Drake (1989).

Figure 2. The temperature dependence for the emission measures of solar abundance main
sequence and luminosity class IV stars is shown in 2a and 2b, respectively. We generally
find Em a T-1.240.2 (solid lines).

Figure 3. When the temperature dependence for the emission measures is determined from
the C IT and C IV lines in giants and supergiants (dashed lines), excess emission measures
for the Si 1V and N V lines are found when solar abundances are assumed as seen in 3a and
3b, respectively. The apparent excess in the emission measures for the Si 1V and N V lines
is due to larger abundance ratios N/C and Si/C. The deviations from the T-Y relation
(dashed lines) determined from the carbon lines give the abundance changes as shown in
Figure 3a and 3b. This indicates a decrease in the carbon abundance and an increase in the
nitrogen abundance. Solid lines are the best fit to the Em o T-!2 relation.

Figure 4. The transition layer emission measures are shown as a function of effective
temperature for some stars which were also studied by Lambert and Ries (1981). Excess
nitrogen abundances are also found from the transition layer lines.

Figure 5. The photospheric excess abundance ratios, as compared to solar abundance
ratios of nitrogen to carbon, obtained by other authors, are compared with the ones found
here from the transition layer lines. The limits of error for both our study and the
traditional approach of the other studies are shown in the lower ri ght corner. The diagonal
solid line would be obtained for perfect agreement. All stars are giants except the open
circles which are supergiants from the Luck and Lambert (1985) paper.

Figure 6a. The excess abundance ratios of nitrogen to carbon (as compared to solar
abundances) are shown for giants as a function of effective temperature. The nitrogen to
carbon ratio increases for cooler stars.

Figure 6b. Figure 6a is reproduced for stars with known rotational periods; different
rotational periods are indicated by different symbols as explained in the Figure.
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Figure 6¢c. Figure 6a is reproduced, but absolute visual magnitudes are indicated by
different symbols.

Figure 7. The excess abundance ratios of nitrogen to silicon, as compared to the solar one,
are plotted as a function of effective temperature.

Figure 8. The abundance ratios of silicon to carbon (adjusted to main sequence carbon
abundance, see text) as compared to the solar ones are shown as a function of effective
temperature.

Figure 9. Lithium abundance and excess abundance ratios of nitrogen to carbon (as
compared to solar abundances) are shown for the same sample of giants as a function of
cffective temperature.
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Abstract

Gray found that field giants with Tes ~ 5500 K experience a steep decrease in rotational
velocities coupled with a decrease in transition layer emission. He attributes this decrease to
fast magnetic braking. Endal and Sofia and Gray and Endal find that it can also be explained
by redistribution of angular momentum for rapidly increasing depths of the convection zones

if these rotate with depth independent specific angular momentum.

We represent here additional arguments in favor of the latter interpretation: The increase
of N/C abundances due to deep mixing occurs at the same point as the decrease in v sin i.
On the other hand. the ratics of the CIV to CII emission line fluxes decrease at this point
indicating smaller contributions of MHD wave heating. The X-ray fluxes decrease at nearly
the same T.q. We thus find no observations which would indicate larger magnetic activity

which could lead to fast magnetic braking.

Theory predicts a rapid increase in the convection zone depth at the T.r where the

decrease in v sin i is observed. This can explain the observed phenomena.

PRECEDING PAGE BLANK NOT FILMED



1. Introduction
1.1. Rotational velocities

Gray (1981, 1982) pointed out that along the giant evolutionary sequence the rotational
velocities v sin i appear to decrease abruptly around spectral types G5 to G8III. This was
later (1989) revised to a decrease at GOIIL. Gray also pointed out in 1982 that correlated
with this occurs a steep decrease in the CIV emission line fluxes at 1550 A originating in
the transition layers between stellar chromospheres and coronae. Simon and Drake (1989)
state that they cannot confirm a steep decrease of v sin i at G5III but instead see a smooth
decline for stars later than GOIII. They explain their different conclusion by the fact that
Gray did not consider upper limits for v sin i while they included them. Gray as well as
Simon and Drake suggest that magneto-hydrodynamic braking due to stellar winds decreases
the rotational velocities of the giants when they evolve to lower effective temperatures. On
the other hand, Endal and Sofia (1978), and Gray and Endal (1982) point out that the
expansion of the stars on the red giant branch together with the rearrangement of angular
momentum due to the increasing depth of the convection zones may well explain the decrease
of v sin i for cool giants. They find that if convection zones rotate with depth independent
specific angular momentum the observed decrease in v sin i is obtained also theoretically. If
on the other hand convection zones rotate as rigid bodies, presumably due to large turbulent

viscosity then additional, presumably magnetic, fast braking is required.

Rutten and Pylyser (1982) estimate magnetic braking times from the observed decay
times for rotation of main sequence stars in galactic clusters of known ages (Skumanich
1972). They find that these braking times are longer by about a factor of 10 at B-V ~ 0.8
than the giant evolution times. They also argue that the decrease in v sin i is actually more
smooth than found by Gray and claim that the decrease can be explained by the changing

moments of inertia for the expanding giants.

The question then is whether the steep decrease in v sin i is due to a rearrangement of
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angular momentum in the deep convection zones as suggested by Endal and Sofia (1979) and
Rutten and Pylyser (1988), or whether a fast magnetic braking takes place with increasing
depth of the convection zone as favored by Gray (1981,1982) and by Simon and Drake (1989).
If fast magnetic braking is responsible we would need an increase in the braking efficiency
of the stellar winds at the phase of rapidly decreasing v sin i. This will presumably require
higher densities or higher temperatures of the coronae. We might then expect stronger X ray
cmission at these effective temperatures which would probably also mean higher transition
layer emission line fluxes. The larger depth of the convection zone might perhaps lead to
stronger dynamo action which could cause such effects. If so this could lead to a larger

contribution of magnetic heating.

We will test here whether any of these effects expected to be seen for fast magnetic

braking can actually be observed.

We will rediscuss the question of the decreasing v sin i making use of known measured
values of v sin i as compiled by Rutten (1987), Simon and Drake (1989), Gray (1989) and
Maggio et al. (1990). We will also make use of the CIV to CII line flux ratios for giants. We
argue that these line flux ratios are larger for large MHD wave contributions to the heating
of transition layers (Bshm-Vitense and Mena-Werth 1991a). They are thus an indicator of

magnetic activity.

We will discuss in this context the X-ray observations for giants published recently by
Maggio et al. (1990), which are also a measure for magnetic activity.

1.2. Heating mechanisms for chromospheres and transition layers

Simon and Drake suggest that different kinds of mechanical energy input may be

responsible for the heating of transition layers in F stars and in G stars.

In a separate paper (Bohm-Vitense & Mena-Werth 1991a) we have also studied the
question of different heating mechanisms for different stars. We found that for giants large

CIV/CII line flux ratios correlate with high rotation velocities and some small optical light
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variations indicative of large starspots. We showed that large Rerv = F(CIV)/F(CII) line
flux ratios are also correlated with large transition layer emission line fluxes. Here “large”
Rciv means about 2.5 as opposed to 1.25 for socalled “low” values of Rcypv. Large Repy
values also correlate with temperature increases in the high photospheric layers by up to 300
K as indicated by an increase in the continuous flux for wavelengths around 1950 A. This
temperature increase was attributed to heating by magnetohydrodynamic (MHD) waves
rather than to acoustic waves, because acoustic waves cannot deliver their energy in the
high photospheric layers where they have not yet steepened to shockwaves. Heat conduction
down from the chromosphere does not supply enough energy. We therefore argue that
“large™ values of Repy are indicative of mainly MHD wave heating in the transition layers

while smaller values of Reqy show a smaller contribution of this heating mechanism.

From the theoretical point of view different line flux ratios may be expected for different
heating mechanisms but not for different fluxes of the same kind (BShm-Vitense 1987). Only
different heating mechanisms have different height dependences of the energy input leading
to different temperature gradients in layers with different temperatures. The CII and CIV
lines originate at very different temperatures, about 30,000 K and 105 K. Their flux ratio is
independent of changes in the carbon and nitrogen abundances. Measured values of Repy

can therefore be indicative of the heating mechanism at work.
1.3. Surface element abundances in giants

Sweigart and Mengel (1979) emphasized already that increased N/C abundance ratios
are found for giants at the same T,.q where v sin i decreases, Deep mixing might therefore

be responsible for the decrease in v sin i.

Changes in surface abundances occur in the HR diagram near the knee at the bottom
of the red giant branch (see Brown 1987 for observations in M67 and BShm-Vitense &
Mena-Werth 1988, 1991bh. and Lambert & Ries 1981 for observations of field giants), when
convection becomes very efficient and rapidly extends the depth of the convection zones
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which then reach deep down into the envelopes close to the hydrogen burning shell sources.
Previously C and N abundances in cool giants were determined from photospheric
molecular lines which can, however, for giants only be analyzed for Teg <~ 5000 K.

From the transition layer emission lines we determine these abundances also for higher
temperature giants (Bohm-Vitense & Mena-Werth 1991b) and thereby determine a fairly
accurate value for the Teg at which the N/C abundance ratio increase. We can then see at
which point and how fast the convection zone extends into the region where CNO nuclear

processing has occurred.

2. The Observations
2.1. Rotational velocities of giants

In Table 1 we have listed giants for which reliable data for the rotational velocities v sin
i are available. We have relied on the compilations by Rutten (1987), by Simon and Drake
(1989), Maggio et al. (1990) and Gray (1989). For the stars in Table 1 we also know either
CII'and/or CIV line fluxes or X-ray fluxes. These stars are all field giants though they
include the Hyades giants. They are expected to have had nearly solar element abundances

while on the main sequence.
For a narrow range in absolute magnitudes they should also be of comparable ages except
for B-V R 1.1 where the population II red giant branches and the population I giants appear

in the same part of the HR diagram. Population II giants are rare in the field. Some old

population I giants could however be enclosed in our sample of the coolest giants.

Many of the giants studied here are spectroscopic binaries. If we were to omit all these
stars the statistics would become too poor. We therefore keep many of these stars in the
sample (except if they have an F star companion) but list their peculiarities. We have to

keep this in mind for the discussions.

We have, in Table 1, omitted stars for which only upper limits of v sin i are available or
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stars for which the uncertainties appear to be larger than about 50%. For random orientation
of the rotation axes sini ~ 0.8. If we assume sin i = 1 the average error in v should be

Alog v ~ 0.1.

In Figure 1b we have plotted the log (v sin i) as a function of log Teg, where T.g has been
derived from the B-V colors, using the calibration of B6hm-Vitense (1981) and Flower (1977).

If we assume that during expansion each mass element conserves its angular momentum (case

1 of Gray and Endal) we expect the angular momentum w to vary as w o ﬁl? and v 11{

see also Endal & Sofia 1979). With R? & =L we find for evolution with roughly L ~ const
Teﬁ'

that v Tl{ o TZ;. While many of the stars with B-V < 0.8 follow this line many others do

not. There are several stars with B-V < 0.5 which fall below the T2; relation. Most of these
stars are known spectroscopic binaries or are suspected to have variable radial velocities. We
therefore suspect that these stars may possibly be all close binaries and that their rotational
velocities decrease during their evolution because of braking by binary interaction. There
may, of course, also be some stars which started out with a lower rotation velocity on the
main sequence. Several stars first follow the relation v o T2¢ but for B-V ~ 0.8 we find
a steep decrease in rotational velocities as found by Gray, reaching a minimum around B-V
~ 0.98 to 1.00. For still larger B-V only a few stars like the RS CVn stars still have or
achieve higher rotational velocities supposedly due to binary interaction. A And seems to be
one RS CVn star with low v sin i but only an upper limit of v sin i < 19 km s~! is known.
These stars probably never reach very low v sin i. Binary interaction may prevent this. If
they should reach low v sin i they are possibly not identified as RSCVn’s because of their

relatively low emission line fluxes at this stage.

Most of the stars which have experienced the rapid decrease in v sin i are classified as
CH or CN peculiar because of their peculiar molecular band strengths. They are indicated

by the symbol p in Figure 1.

A small group of stars experiencing some decrease in v sin i already for B-V ~ 0.7, does
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not seem to show the peculiar molecular band strengths. Perhaps these stars have slightly

different masses than the other stars.
2.2. Transition layer emission line fluxes

In Table 1 we also give the observed C1I (1335 A) and CIV (1550 A) emission line fluxes.
The data are based on the compilations by Simon and Drake (1989), Rutten (1987) and the

data of Bohm-Vitense and Mena-Werth (1991a). Uncertain values are indicated by brackets.

In Figure la we have plotted the CIV surface fluxes as a function of Teg. As was
discussed by Simon and Drake the emission line fluxes are nearly independent of T.g for
B-V < 0.75 or Teg 2 5600 K. For lower Tef a steep decrease in the emission line fluxes is
seen parallel to the decrease in v sin i. For temperatures below ~4700 K only RS CVn stars
still have CIV emission line fluxes comparable to the early G giants. (The behavior of the
C1I lines is similar to the one of the CIV lines, because the differences in the C IV/CII flux

line ratios are only a factor of 2 at most.)

We see no indication for increased transition layer emission at the phases of fast decrease

of v sin i. This means we see no indication of increased dynamo activity.
2.3. Ratios of the CIV to CII emission line fluxes

As discussed by Boéhm-Vitense and Mena-Werth (1991a) the ratio Rey = FT((%%) can

give us information about the heating mechanism for the transition layers and chromospheres.

We have therefore in Figure 1c also plotted log Rery = log EF((ECII_\I/)) as a function of T.g.

The scatter in this graph is large. Comparing different measurements of emission line
fluxes for the same spectra we find differences of A log ' ~ 0.1, telling us that this is
the uncertainty of the flux measurements. For the flux ratio an uncertainty of at least 0.2
dex may therefore be expected. Nevertheless some general trends may be recognized in
Figure lc: Looking first at the I and early G giants we see a decline in Repv parallel to
the decline in v sin i for the spectroscopic binaries and a few other stars with lower v sin 1.

8



Notice that some of the stars seen in Figure 1b are missing because of uncertain or unknown
flux measurements. The decrease in Rcy indicates, in our opinion, (see BShm-Vitense &

Mena-Werth 1991a) a decrease in the MHD wave heating contribution.

The Rcpv values remain high for the stars whose rotation follows the v o Tgﬂ relation
but then drop also for log Teg < 3.7 when the v sin i drop for all stars. This in our opinion
again indicates that the contribution of MHD wave heating decreases when v sin i drops.
There is again no indication of increased activity due to the larger depth of the convection
zones. One RS CVn star is found with a moderately low Ry value, which can, however,
be just due to the uncertainty in the measurements. Otherwise it seems that for RS CVn

and FK Comae stars MHD wave heating is always the main contribution to the heating.

In Figure lc the point for ¥ Tau was omitted because the CIV line appears to be highly
variable as seen from Figure 2 where we compare 4 low resolution spectra of v Tau taken
by different observers at different times but with similar exposure times. For this star the
smallest Rery value is observed for the lowest continuum flux around 1950 Ain the spectrum

SWP 27912.

For the stars with log Teg > 3.8 the surface line fluxes do not follow the trend of the
Rerv as seen when comparing Figures la and lc. One might expect that for decreasing
MHD wave heating the line fluxes might decrease. It appears, however, that for F giants
the acoustic flux generation and deposition increases with decreasing Teg because of the
increasing densities and extends of the convection zones (see also Bohn 1984 and Gilliland

1986). This secems to compensate for the decreasing MHD wave heating.
2.4. Nitrogen and Carbon surface element abundances

In Figure 3b we have plotted as a function of T.g the surface abundance ratios of N/C as
determined by Lambert and Ries (1981) from photospheric molecular bands (strong enough
CN bands are only seen for log Teg < 3.70) and as determined by Bshm-Vitense and Mena-
Werth (1988, 1991b) from transition layer emission line fluxes. (For consistency we use here
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for the Lambert-Ries stars also the Teg as determined from the B-V colors, rather than using

the Teg given by Lambert and Ries. In essence we plot everything as a function of B-V.)

Bohm-Vitense and Mena-Werth determine changes in the N/C ratio as compared to
main sequence stars. As seen in Figure 3b they then find for most F and early G giants
A log —I(\% = 0+ 0.15. 2 Cas and a few other stars are exceptions. (8 Cas is a § Scuti
star. The emission line strengths may be influenced by pulsation. If so our method of
analysis is not applicable and the derived N/C abundance ratio is probaly in error. The CIV
line is unusually strong ,leading to the apparently low nitrogen abundance determination).
Lambert and Ries determine abundances only for cool stars with molecular bands. They
determined values of C/H and N/H from which we determined the N/C abundance ratios.
A log N/C can then be obtained from the adopted main sequence value for N/C. A solar
value (C/N)g = 4.8 was given as reference value by Lambert and Ries. We adopted for our
studies a somewhat lower value, namely (C/N)ys = 3.16. This gives a better representation
of the emission line fluxes for main sequence F stars. It is also the solar abundance ratio
given by Anders and Grevess (1989). For a given star the Lambert and Ries values for A log
N/C come out larger by about 0.15 which can be attributed to the different values of (%)MS

used for the two data sets.

The observed increase in the N/C abundance ratio is in rather good agreement with the
one predicted by theoretical studies by Sweigart, Greggio and Renzini (1989) as shown by
the solid line in Figure 3b. We notice, however, that larger N/C ratios are already observed
for some stars with log Teg > 3.71. This might be partly due to lower masses of the stars.
According to the calculation by Sweigart et al. increases in the N/C abundance ratios start

to occur at somewhat lower Teg for stars with somewhat lower masses.

Unexplained are the higher N/C abundance ratios observed for some stars with log Teg
around 3.82. If this anomaly is confirmed by additional observations it may show that these

stars are descendants of Am or Ap stars (Wheeler 1991) whose surface abundance in carbon
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was reduced presumably due to diffusion. (Some Ap stars also show reduced surface carbon
abundance). If so this anomaly should disappear when the convection zone increases n
depth. This may be observed for log T ~ 3.77. Clearly more observations are needed for

this range in Teg .
Also unexplained are the very large N/C abundance ratios (~10) seen for some stars

with log Teg <~ 3.73. Maybe these are clump stars which have experienced some additional
mixing during the helium flash or maybe they have experienced mass transfer from an evolved

star?

In any case while there are a few peculiar stars like DK UMa (classified as RS CVn

star by Kholopov 1985 but as a pulsating star by Henriksson 1977), or HR9024, a strong

cmission line star, the A log N/C increase generally for log Teg =~ 3.72 where we observe
the decrease in v sin i as seen by comparison with Figures 1b and 3b. It is interesting to note
that DK UMa does actually have a higher N/C abundance consistent with its low v sin i.
Lither it was mixed at a somewhat earlier state of evolution than the other stars (perhaps it
has a lower mass) or its B-V does not indicate its real Teg and it is actually cooler. HR9024
seems to be at an evolutionary stage where it is just being mixed. The RS CVn star A
And apparently is not deeply mixed. Perhaps a stronger magnetic field may suppress the
efficiency of convection in this star or its B-V does not indicate its correct Teg. Its vsiniis
<19 kms~! and is probably mainly determined by tidal interaction. It appears to be metal

deficient (Helfer and Wallerstein 1968) and therefore probably of low mass.
2.5. X-ray observations

Observed values for X-ray fluxes fy have been collected by Maggio et al. 1990. We
have determined angular diameters for the giants by means of the Barnes-Evans method

(Barnes-Evans 1976) and calculated surface fluxes. as given in Table 2,

On the sun X-rays are preferentially emitted in coronal loops (Rosner. Tucker and Vaiana
1978). If the same holds for the giants then we may expect that X-ray emission increases
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with increasing dynamo strength which means with increasing v sin i, as is generally thought.

We see no indication of increased X ray fluxes at the phase when v sin i drops. We thus

see no indication for increasing dynamo strength and stellar winds. In Figure 3c we find a

steep decrease in X-ray fluxes for stars with log Teg < 3.72 in near agreement with the Tog
for the steeply decreasing v sin i values (log Teg ~ 3.683). We notice however, that at least
one star, DK UMa, has already a low v sin i while its X-ray flux is still high. Because of
the uncertainty in sin i we cannot be absolutely certain that its rotation velocity has indeed
decreased, though the low value of Reory supports this assertion. If so, it means that the
fields mainly responsible for the coronal X-ray emission have decay times longer than the

decay time for the rotation velocity and for the Reypy.

The stars with the low X-ray fluxes all have low v sin i and low F(CIV). To our surprise
we do, however, also find a fairly large number of stars in the same T range including
several RS CVn stars which have a 10 times higher X-ray surface flux than most of the stars
with 3.65 < log Teg < 3.70 and about 100 times more X-ray surface flux than 3 Gem
and ¢ Cyg. Not all of these stars are close binaries. ¥ Tau has an X-ray flux 3 times higher
than corresponding to its low v sin i values, suggesting that at least sometimes it has some

unusual activity.

It is interesting to note that the otherwise apparently similar 3 Hyades giants show very
different X-ray emissions, ¢ and 0' Tau differing by almost a power of 10, vet their v sin i

values are very similar.

3. Interpretation of the Observations
3.1. Reduction of rotation by deep convection

The compilation of well known v sin i values here confirms the conclusions by Endal and
Sofia and by Rutten and Pylyser that for giants the decrease in rotation velocities for stars
with log Teg > 3.7 is generally due to the expansion of the stars along the giant branch. At
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the base of the ascending red giant branch deep mixing occurs due to the increasing depth
of the convection zone as expected theoretically and as verified by the increase in the N/C

abundance ratios. The decrease in v sin i occurs at the same Teg.

The coincidence of the decrease in v sin i and the deepening of the convection zones
is strong support for the conclusion that this decrease is due to mixing. The temperature
for which the convection zones reached deepest into the star agrees with the temperature
for which the low v sin i are reached, (see Figures 3a and 1b), and where the highest N/C
abundance ratios are reached (see Figure 3b). If we assume that before mixing the star was
rotating approximately as a rigid body then the deeper layers have a much lower angular
momentum than the surface layers. Convection transports this low angular momentum
material to the surface leading to the lower surface rotation. The close agreement between
the observed decrease in v sin i and the one calculated by Gray and Endal 1982 for the case
of depth independent specific angular momentum for stars of 2.5 and 3 Mg, (see the squares
in Figure 1b) shows that the convection zones rotate most probably in this mode, at least
during the time of increasing convection zone depth. Given enough time it may perhaps be
possible for turbulent viscosity to influence the angular momentum distribution somewhat.
This might perhaps lead to the slight increase in v sin i which seems to be observed for some
of the cooler, apparently single giants. If the slight increase in v sin i for the cooler single
stars can be verified by more observations this would be a strong argument against magnetic

braking. At present the evidence is too weak to use this argument.

For these low T.g we may also see stars of lower masses and larger ages. Gray and
Endal’s calculations give slightly higher v sin i for lower mass stars, if they start out with
the same v sin i at the main sequence. Lower mass main sequence stars do, however, have
lower v sin i when they leave the main sequence than the A stars. They are then expected
to have lower v sin i than the more massive stars when they start to climb up the red giant
branch. While this question is not settled it seems that the possibly higher v sin i for single
stars with log Teg ~ 3.68 cannot be understood in this way.

13



3.2. Fast magnetic braking of rotation?

Rutten and Pylyser estimate magnetic braking times of about 5 - 107 years for giants
with B-V ~ 0.8 while for several stars the decline of v sin i happens in about 3 million
years as seen from a comparison of Figures 3a and lb. Faster magnetic braking might be
expected for larger magnetic activities of the giants which could perhaps be caused by the
deeper convection zones. There is no sign of increased magnetic activity at log Teg ~ 3.75.
The decreasing CIV/CII ratio of emission line fluxes indicates decreasing magnetic activity
parallel with the decrease in v sin i. Transition layer emission line fluxes also decrease as
scen in Figure la. Increased coronal activity would be expected to show up in the X-ray
emission, which does, however, also decrease at these evolutionary phases. There is therefore
no ohserved indication for increased magnetic activity at this phase of giant evolution and

therefore no ohservational basis for the hypothesis of fast magnetic braking at this phase.

We conclude that the rearrangement of angular momentum in a rapidly deepening
convection zone rotating with nearly depth independent specific angular momentum is the

most likely explanation for the rapidly decreasing rotational velocities in giants.

We want to emphasize that we do not claim that the decreasing v sin i for later spectral
tvpes along the main sequence are due to a similar reason. Main sequence stars with
chromospheres and coronae stay on the main sequence long enough that magnetic braking
can reduce their angular momentum. The depth of the convection zone does not change for

cach star during its main sequence lifetime. For giants the situation is very different.
3.3. X-ray emission

The X-rayv emission does not appear to be very closely correlated with v sin i. While for
some of the stars with log Teg < 3.71 the X-ray emission decreases as expected it does not
do so for many other stars. According to Maggio et al. 15 out of 17 detected X-ray sources
are multiple systems. In addition to the points shown in Figure 3c there are several upper

limits determined for KO I1II stars which are below the value measured for 4 Gem. [t seems
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therefore possible that the measured X-ray fluxes refer all to binaries and are higher than the
X-ray fluxes for single stars in the temperature range for the low v sin i. Why the multiple
cool star systems should show a much higher X-ray flux than single stars with the same v
sin 1 is not obvious to us, especially since their CII and CIV line fluxes do not seem to be
much higher. It also remains a puzzle why there should be such a rather tight sequence of
stars with many RS CVn stars on it emitting just about a factor of 10 more X-rays than
the other stars. They appear to escape the phase of steep X-ray decline and instead seem
to follow their own sequence of slowly declining X-ray emission as seen in Figure 3c. Are we

permitted to speculate that perhaps their X-rays do not originate in their coronae proper?

4. Summary

The sharp decrease in v sin i for giants with B-V < 0.8, is most likely attributable to the
rather sudden increase in depth of the hydrogen convection zone at the evolutionary phase
when the giants start to ascend the red giant branch. Low angular momentum material has

been brought to the surface also having a higher N/C abundance ratio.

We see no indication of increased magnetic activity which could lead to fast magnetic

braking for giants with B-V ~ 0.8.

For log Teg < 3.67 it seems possible that the v sin i recover slightly for some stars. It
is not clear at present whether this might be true for binaries only. In single stars it could

possibly be due to a partial return to rigid rotation because of turbulent friction.

Due to lower v sin i the MHD wave heating of the transition layers decreases. leading to
smaller emission line fluxes and to changes in the temperature stratification in these layers
which are then mainly heated presumably by acoustic flux. The change in temperature

stratification in the transition layers causes a reduction in the CIV/CII line flux ratios.

The decrease in v sin 1 leads to a steep decrease in X-ray emission for some stars but not

so much for others. Binary nature may prevent a steep decrease in X-ray fluxes.
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RS CVn stars do not show a steep decline in X-ray emission at the mixing phases. From
the available data we do not know whether their transition layer emission decreases steeply

at these phases.
Some other points may be of interest:

If the decrease of surface rotation velocity is due to rearrangement of angular momentum
in the convection zone then we must find a large gradient of rotational velocity at the
bottom of the convection zone which will probably lead to other instabilities and may extend
turbulent mixing to layers below the convection zone proper. This may perhaps explain the
unexpectedly large N/C abundance ratios observed for some stars.

If the decrease in surface rotation velocity is not due to braking then the total angular
momentum is conserved, yet the magnetic activity decreases. This then shows that the
observed magnetic activity is due to magnetic fields generated in the high layers of the
convection zone.

Since the X-ray fluxes, presumably concentrated in coronal loops, also decrease with
decreasing surface rotation but constant overall angular momentum we must conclude that
even the large scale magnetic fields seen in the loops are generated in the high layers of the
convection zone. If the slight delay in the decrease of the magnetic fields as compared to the
decrease in surface rotational velocity, suggested in Figure 3 especially by DK U Ma, is real
(this clearly needs more observations to confirm), then this indicates that these large scale

fields take a time on the order of 10° years to decay.
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Figure Captions

Figure la. The dependence of the CIV (1550 A) emission line surface fluxes on the effective
temperature is shown for giants. Dots indicate known spectroscopic binaries, v indicate
variable radial velocities and question marks possible variable radial velocities for the
stars. RS indicates RS CVn stars, p stars with peculiar CN and/or CH molecular band
strengths. Brackets signal uncertain measurements, and arrows show that the values

given are upper limits.

Figure 1b. The measured rotational velocities v sin i are shown as a function of Teg or B-V.
Tef scale is the same as in Figures la and 1c. Notation as in Figure la. Notice that
the peculiar CN and CIH molecular band strength are observed only after the stars have

decreased their v sin i.

The dashed line indicates the expected decrease in v sin i due to expansion if each mass

clement were to conserve its angular momentum (see text).

The values calculated by Gray and Endal (1982) for v sin i = 140 kms~! and for depth
independent specific angular momentum in the convection zones are given as squares.

Figure 1c. The logarithm of the CIV to CII line flux ratio Rery = log EF((%_IIVIT) 1s shown

as a function of log T.f. Notation is the same as in Figure la. The ratio decreases for
slowly rotating stars, probably showing a smaller contribution of MHD wave heating.

Tau was omitted from the plot because of the large variations in R¢ypy.

Figure 2. Different spectra of ¥ Tau are shown displaying the large variations in the
appearance of the CIV line at 1550 A. Other spectral changes appear to be present

also. The different spectra are displaced upward by 0.6 E-14 each.

Figure 3a. The theoretical evolutionary track of a 2.2 Mg star is shown in the Teq, luminosity
diagram (right hand scale). Also plotted is the age t as a function of Teg (left hand outer
scale) and the depth of the convection zone, measured by the mass Mcg [Ma] (left hand
inner scale) below the lower boundary of the convection zone. The point E gives the
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evolutionary phase with the largest depth (in mass) of the convection zone. Data are
from Sweigart, Greggio and Renzini (1989).
Figure 3b. The observed changes in abundance ratios of nitrogen to carbon N/C, as compared

to main sequence abundances, are plotted as a function of Teg. The point for the é Scuti

star # Cas at log Teg ~ 3.86 lies at Alog N/C = —0.24.

Figure 3c. Plotted as a function of Teg are the X-ray surface fluxes as calculated from the
data given by Maggio et al. (1990). Notation as explained in the figure. The symbols 8,

~ and @ refer to the Hyades giants.
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